The Charge-Time-Of-Flight Instrument

CELIAS Workshop - Gottingen

N. Janitzek, A. Taut, and L. Berger

Institut fiir Experimentelle und Angewandte Physik der
Christian-Albrechts-Universitat zu Kiel

August 2014



o CTOF
@ Principle of Operation
@ In-Flight Calibration — m/q algorithm

® Heavy Pickup lons
@ What are Pickup lons
@ Interstellar Source of Pickup lons
@ Inner Source of Pickup lons

© Heavy Pickup lons - CTOF Observations
@ Inner Source Pickup lons - CTOF
@ Short-Term Variability of the Inner Source
@ Composition of the Inner Source

N. Janitzek, A. Taut, and L. Berger The Charge-Time-Of-Flight Instrument



CTOF - Principle of Operation
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CTOF - Principle of Operation
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In-Flight Calibration - Overview

Model ToF/ns
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In-Flight Calibration - Overview

00| Determine ToF positions of prominent ions in in-flight data

i

ToF/ch



In-Flight Calibration

DOY 147-230
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In-Flight Calibration
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» 1(i, Epost): Relative ToF delay due to energy deposition
and angular scattering in the carbon foil
— derived from TRIM simulations.

» Problem: no conversion from ch in ns given!



In-Flight Calibration
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In-Flight Calibration

2 =22 (£+.0) (6 By

» 1(i, Epost): Relative ToF delay due to energy deposition
and angular scattering in the carbon foil
— derived from TRIM simulations.

» Problem: no conversion from ch in ns given!

» Criterion: linear ToF conversion.
— Minimize deviation of linear fit of ToF positions (in
ch) vs. model ToF!

» Adapt model to in-flight data by optimizing U, and foil
thickness d.



In-Flight Calibration
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In-Flight Calibration - Result

120

0

o+ o+ o+
o+ o+

Fe

U, = 24.07 kV/20.04 kV
d=210 A

100

= 7[ns] = 0.19728 - 7[ch] — 0.941ns
= 80 ch
g
DOY 147-230
60
40

200 250 300 350 400 451
Fitted ToF/c

E/Q-step #



Heavy Pickup lons



Pickup lons

» What are Pickup lons?
» Not of (direct) solar origin
» Embedded in the solar wind
» How can we identifiy Pickup lons?

» We can measure Mo, Qion, and Vion
» We can not measure the source!



Pickup lons

» What are Pickup lons?

» Not of (direct) solar origin
» Embedded in the solar wind

» How can we identifiy Pickup lons?

» We can measure Mo, Qion, and Vion
» We can not measure the source!
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Interstellar Neutral Gas
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Interstellar Pickup lons

= ARTICLES

NATURE VOL. 318 5 DECEMBER 1985

Direct observation of He* pick-up ions
of interstellar origin in the solar wind
E. Mébius’, D. Hovestadt’, B. Klecker’, M. Scholer’, G. Gloeckler’ & F. M. Ipavich'

* Max-Planck-Institut fiir Physik und
t of Physics and

Institut fiir
University of Maryland, College Park, Maryland 20742, USA

Physik, 8046 Garching, FRG

Singly-ionized helium with a velocity distribution extending up to double the solar wind velocity has been detected in
interplanetary space. This distribution unambiguously determines the source: interstellar neutrals, ionized and accelerated
in the solar wind. The observed significant flux increase in early December is due to the gravitational focusing of the

interstellar neutral wind on the downwind side of the Sun.

THE penetration of the interstellar medium into the heliosphere
and the interaction between the solar wind and the interstellar
gas have been of great interest for many years'"*. The first

i 1 evid of neutral i hydrogen penetrat.
ing into the heliosphere was obtained from Lyman a sky back-
ground mapping®®. Similar observations of interstellar helium

using the He 1 584-A resonance line”® revealed the
of an interstellar neutral wind in interplanetary space which is
subjected to the forces of solar gravitation and radiation press-
ure. When approaching the Sun, the interstellar gas is ionized
by solar i iati by charge
wind ions and by collisions with solar wind electrons. The newly
created ions are then picked up by the solar wind through
i ion with the i 1 Yy ic field.

‘While most of the constituents are already ionized far beyond
the orbit of the Earth, neutral helium (because of its high
ionization potential) approaches the Sun to <1AU (ref.1).
Therefore, a significant fraction of the helium is ionized inside
the Earth’s orbit and one would expect that these ions are
observable by spacecraft in the solar wind. So far, no conclusive
measurement on He ™ ions of interstellar origin has been given.
Although signatures of He" in the solar wind with varying
abundances have been reported occasionally'®!!, a systematic
search for a permanently present flux of interstellar He" as part

Sector 3 Sector 4 Sector 5
20k
fsw
0 He'ty
i (L n :n n
c Heyy | T68keV
3 | I
N -
r |
with solar £ | " | He*.
s )
8 o Ihxﬁ Ls
| ! Yo Thev
| |
" ©
‘ Hel, ; He!
o n, £, i R
00 200 0 2% 00 200

Time-of-flight (ns)

Fig.1 Typical TOF-histograms at three different energy steps

taken in the Sun sector and the two adjacent sectors. The data

were obtained during a period of 45 min on 11 November 1984,
at ~18 Ry in front of the Earth’s bow shock.



Interstellar Pickup lons
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Inner Source Pickup lons

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. A12, PAGES 23,373-23,377, DECEMBER 1, 1995

C* pickup ions in the heliosphere and their origin

J. Geiss,! G. Gloeckler,? L. A. Fisk,> and R. von Steiger*’

Abstract. C* pickup ions were discovered with the solar wind ion composition
spectrometer flying on Ulysses. Whereas the other nonlocally occurring pickup ions are
produced from the interstellar gas penetrating deep into the heliosphere, C* comes from
an “inner source” which is located at a solar distance of a few AU and extends over all
ucuuspﬂem latitudes investigated so ld.l The total produciion of C*, N*, and O by
this inner source is of the order of 10~ relative to the total production of O* from the
interstellar gas in the helmsphere Thus the inner source does not significantly contribute
to oxygen or nitrogen in the anomalous cosmic rays (ACR), but its contribution to ACR
carbon may not be negligible. We propose that the inner source material is carbon
compounds evaporating from grains. At this time, the evidence points to interstellar
grains as the major source, but we do not want to exclude yet a contribution from grains
of solar system origin.



Inner Source - Velocity distributions
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Inner Source - Composition

Table 2. Element Abundance Ratios of the Inner Source PUlIs
Compared With Previous Results and to Solar Wind Abundances®

Inner Source Solar Wind
[von Steiger et
Mg (Element)  This Work  Gloeckler et al. [2000] al., 2000]

m/qg =12 (C"  1.01 £0.12 1.46 + 0.12 0.683 + 0.040

mlg =14 (N")  0.42 +0.07 0.40 + 0.05 0.111 + 0.022

mlg =16 (0")  1.00 +0.10 1.00 + 0.06 1+0

m/qg =20 (Ne") 0.14 £ 0.03 0.32 +0.05 0.082 +0.013
*The inner source PUls show a composition similar to solar wind

composition.

from Allegrini et al. 2005



Inner Sourc
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Inner-source production scenarios

Sungrazing comets (Bzowski & Krélikowska 2004) Dust-dust collisions (Mann & Czechowski 2005)

N mp

Solar wind recycling (Schwadron et al. 2000)




Inner-source production scenarios

A05105 ALLEGRINI ET AL.: BRIEF REPORT A05105

Table 3. Summary Table Listing the Proposed Mechanisms and Their Relation to the Five Constraints

Scenario One, Scenario Two, Scenario Three,

Scenario Four,
Solar Wind Solar Wind Products of Dust-Dust
Recycling by izati S ing Comets Collisions
Solar wind composition Possibly” Yes® No® No*
Peak near the Sun (10-30 Rs) Yes Yes Possibly Possibly
Large pickup ion flux Unlikely! Possibly Possibly Possibly
Randomly distributed source Yes Yes Unlikely Yes®
Stability over solar cycle Yes Unlikely" Yes Possibly
“Success of this scenario requires a very low sputtering yield.

“Grains act as carbon foils to neutralize the solar wind.
“Depleted in Ne, rich in C, Si, Mg, Fe.
“However, peaks at low latitude.

4Grains efficiently scatter light and would yield a cross section 2 decades higher than observed from zodiacal light
'Success of this scenario requires that CMEs do not trap nanometer-sized grains.

Sungrazing comets (82

Dust-dust collisions (Mann & Czechon

Solar wind recycling (5




Heavy Pickup lons - CTOF Observations



E/Q-step #

DOY 147-230

Counts/max(Counts(EpQ-step))
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Correlation of Inner-Source and Solar-Wind flux?
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CTOF - Observations
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CTOF - Statistics
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Variability
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Correlations
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Correlations - Cadence
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Correlations - Periods
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Inner-source PUI composition
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» M/Q resolution and large geometry factor should be
sufficient to derive C™, N*, O, Ne™, Mg™, Mg?*, and
Sit abundance ratios.

» Inner-source PUIls dominate in 0.8 < w < 1.2.

» Statistical assignment of counts!



Inner-source PUI composition

» Sort counts by wg+.
» Fit M/Q histograms, take efficiency into account.

» Compose total flux by accumulating over the w-range.



Peak shape model

» Derived ratios for 0;, 0,, and k, between all ion species
from TRIM simulations.
— K, fixed; one parameter for 0; and o, to describe all
ion distributions!

» Fit of the M/Q histograms with resampling using Poisson
noise.
— Functions 0;(Epost) and o, (Epost).
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Data ||
— Fit
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amu on Solar Wind
lon M/Q/= o (von Steiger et al. 2000)
Cct 12 =1 =1
N+ 14 0.22 £0.03 0.13 £0.04
o+ 16 0.57 £0.04 1.49+£0.19
Ne™ 20 0.19 £0.01 0.16 + 0.04
Mg " 24 0.30 £ 0.01
Mg?+ 12 0.07 £0.01 0-21£0.09

Sit 28 0.21 +£0.02 0.20 £0.07




30Rg

1AU

» Production rates due to ion-dust interaction P;, Pi+, and
P, cross-section o oc 12

» Photo-ionisation rates v and v™.



lon M/Q/*= e Simulation
Ct 12 =1 =1

N+ 14 0.22+0.03 0.07+0.03
O 16 0.57+£0.04 0.59 £0.08
Ne*t 20 0.19£0.01 0.05=+0.02
Mg* 24 0.30 =0.01 0.28 £0.11
Mg?* 12 0.07x0.01 0.05=+0.02
Sit 28 0.21£0.02 0.43£0.09
Si%t 14 - 0.05£0.01




lon M/Q /2 Ton Simulation
ct 12 =1 =1

(N* + Si?+)* 14 0.14 £0.03 0.12+£0.04
OF 16 0.57+0.04 0.59 +0.08
Net 20 0.194+0.01 0.05+0.02
Mg* 24 0.30+0.01 0.28£0.11
Mg+ 12 0.0740.01 0.05+0.02
Sit 28 0.214+0.02 0.43 +0.09

*50% of counts N*

. 50% of counts Si?*
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Solar wind speed /X2 8—1

< 350 0.52 £0.04
350 — 400 0.57 £0.07
400 — 450 0.66 £ 0.07
450 — 500 0.87£0.10

500 — 537 0.96 +£0.17




Possible reasons

» Production rates depend on solar wind speed in the solar
wind neutralization scenario.

030 Charge state fractions after 0.5ug/cm’® carbon

e -8 Oxygen
e - Carbon

Fraction of 1+ ions

_ I i I I I
O'OC?OO 400 500 600 700 800 900



Possible reasons

» Production rates depend on solar wind speed in the solar
wind neutralization scenario.

» Different charge-exchange ionisation cross-sections and/or
differential streaming.

» Solar wind elemental composition changes with solar wind
speed?

» Instrumental effects?



CTOF heavy PUI observations:

» The inner-source heavy PUI flux is correlated with the
solar wind heavy ion flux.

» The measured inner-source heavy PUl composition can be
explained with the solar wind neutralization production
scenario.

» The O"/C* abundance ratio increases systematically with
increasing solar wind speed.
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