

Christian-Albrechts-Universität zu Kiel

Measurement of Solar Wind Heavy Ions with CTOF

CELIAS Workshop 27.08.2014

Nils Janitzek

Institut für Experimentelle und Angewandte Physik, Christian Albrechts Universität zu Kiel

- Motivation: Differential streaming of solar wind heavy ions
- In-flight calibration of CTOF: SSD calibration
- Results: High-time resolved velocity distributions of oxygen and iron ions derived from PHA data
- Outlook: velocity distributions for other ions and error estimation

Christian-Albrechts-Universität zu Kiel

Differential Streaming of Solar Wind Heavy Ions

Differential Streaming between Protons and Alpha-Particles

Christian-Albrechts-Universität zu Kiel

Marsch (1987)

Ion cyclotron Resonance: Theory

Differential Streaming Observed with ACE / SWICS

Christian-Albrechts-Universität zu Kiel

Berger et al. (2011)

Differential Streaming Observed with CELIAS/CTOF

Christian-Albrechts-Universität zu Kiel

Hefti et al. 1998 CTOF: Measurement Period DOY 1996 90-230

Differential Streaming Observed with CELIAS/CTOF

Christian-Albrechts-Universität zu Kiel

matrix rates

CTOF: Classification and Data Handling

Christian-Albrechts-Universität zu Kiel

CTOF SMR field definition.

Hovestadt et al (1995)

5

Christian-Albrechts-Universität zu Kiel

In-flight Calibration of CTOF: SSD Calibration

CTOF Sensor: Principle of Operation

Christian-Albrechts-Universität zu Kiel

Measuring E/q, tof and E_SSD gives m,q,v of the incident ions.

Christian-Albrechts-Universität zu Kiel

Particles stop in detector:

$$E_{dep} = E_{\tau} = \frac{1}{2} \cdot m \cdot L_{\tau}^2 \cdot \tau^{-2}$$

Christian-Albrechts-Universität zu Kiel

Ideal detector:

 $E_{SSD} = A_0 \cdot E_\tau + B_0$

 $A_0 := \text{gain}, B_0 := \text{pedestal}, \text{valid for all ions}$

Christian-Albrechts-Universität zu Kiel

Ideal detector:

 $E_{SSD} = A_0 \cdot E_\tau + B_0$

 $A_0 := \text{gain}, B_0 := \text{pedestal}, \text{valid for all ions}$

CTOF Solid State Detector

Christian-Albrechts-Universität zu Kiel

PIPS detector measurement principle:

- lons penetrate through deadlayer and deposit energy in Si-electrons
- electron-hole pair creation :
 3.6 eV per pair
- Measured charge pulse is converted to energy channel

CTOF Solid State Detector

PIPS detector energy loss:

- lons already lose energy within the SiO2 deadlayer
- lons lose energy to target atoms, partly going into phonons and target damage
- Only a fraction of the incident ion energy is measured (*pulse height defect*)
- pulse height fraction :

$$\frac{E_{meas}}{E_{\tau}} =: \eta(Z, v)$$

SSD Pulse Height Defect

SSD Pulse Height Defect

SSD Pulse Height Defect

Christian-Albrechts-Universität zu Kiel

Real detector: $E_{SSD,i} = A_0 \cdot \eta(Z_i, v_i) \cdot E_{\tau,i} + B_0$

n equations for n+2 variables => simulation of pulse height defect with TRIM

SRIM / TRIM

TRIM Setup Window							
Read Me	TRIM	(Setup W	findow)			Calculation	
	TRIM D	emo 📘	?			salealation of Dramage	
	Restore Last	TRIM Data	? Ba	sic Plots Ion Dist	ibution with Recoils	s projected on Y-Plane	▼ ?
2 101		Symbol Nam	ne of Element N	Jumber Mass (am	u) Energy (keV)	Angle of Incidence	
Add New Element to Layer Compound Dictionary							
Laye	Brs Add N	ew Layer	Density Compou	und Sun	bol Name	Atomic Weight Atom	Damage (eV) ?
	1	10000 App 💌	(q/cm3) Corr		Bol Humo		100 20 3 2
				Ţ			<u>-</u>
Special F Name of 0 H (10) int ? Aut ? Tol ? Ra	Parameters Calculation to Layer 1 toSave at Ion # tal Number of Ions andom Number Seed	10000	Stopping Power V SRIM-2008 Plotting Window Min Max	<pre></pre>	Output Disk Files I Ion Ranges Backscattered Io Transmitted Ions Sputtered Atoms Collision Details	s ons ? Resume save TRIM calc. Recoils ? Use TRIM-96 (DOS)	Save Input & Run TRIM Clear All Calculate Quick Range Table

TRIM Results: Simulated SSD Response

TRIM Results: Simulated SSD Response

TRIM Results: Simulated SSD Response

TRIM vs measured SSD signal

TRIM vs measured SSD signal

TRIM vs measured SSD signal

TRIM vs measured SSD signal

Comparison with SSD Preflight Calibration

CAU

Christian-Albrechts-Universität zu Kiel

15

Solution: Calculate Detector Gain from Calculated He PHD

Solution: Determine Absolute Pulse Height Fractions Relative to Helium

Calibrated Ion Positions in in the ET-matrix

Calibrated Ion Positions in in the ET-matrix

Calibrated Ion Positions within in the ET-matrix

Fitted ToF and ESSD widths

Calibration Check with Long-Time Data

Obtaining Velocity Distributions from CTOF Short-Time Data

Christian-Albrechts-Universität zu Kiel

5min-data

390

405

420

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

435

Normalized Counts

CTOF: 1h, 15min, 5min Velocity Distributions for Fe9+

Christian-Albrechts-Universität zu Kiel

Velocity distribution of phase-space-corrected counts within the 1-sigma ET-environment of Fe9+ peak position. Data from DOY 1996 213, minutes: [144,159] (403km/s<=v_proton<=403km/s)

Velocity distribution of phase-space-corrected counts within the 1-sigma ET-environment of Fe9+ peak position. Data_from DOY 1996 213, minutes: [144,149] (403km/s<=v_proton<=403km/s)

Christian-Albrechts-Universität zu Kiel

Results: 5-Minute Resolved Velocity Distributions for Oxygen and Iron Ions Derived from Box Rates

Differential Streaming Obtained from Box Rates

CAU

Christian-Albrechts-Universität zu Kiel

24

Differential Streaming Obtained from Box Rates

CAU

Christian-Albrechts-Universität zu Kiel

Fe10+

Assignment Problems with Box Rates

Assignment Problems with Box Rates

Assignment Problems with Box Rates

First Improvement: Distribution Fits

Christian-Albrechts-Universität zu Kiel

Only free prameters: distribution heights

First Improvement: Poisson Fits

Second Improvement: Asymmetric Ion distributions

Fit parametrization:

Peakwidths tied to calibrated peak position.

→ peak widths do not arbitrarily expand on each others cost

Christian-Albrechts-Universität zu Kiel

Final Results: 5-Minute Resolved Velocity Distributions for Oxygen and Iron Ions Derived from Poisson Fits

Results from Poisson Fits

Results from Poisson Fits

Box Rates vs Poisson Fits

CAU

Box Rates vs Poisson Fits

Summary

Christian-Albrechts-Universität zu Kiel

- Performed in-flight calibration with long-time data. The calibration is able to predict the ion's positions in the ET-matrix.
- 5-minute resolved velocity spectra derived from boxrates show significant differential streaming for O6+ but much lower differential streaming for iron ions Fe9+, Fe10+. At low proton velocities even a slight negative differential streaming is observed.
- 5-minute resolved velocity spectra derived from Poisson fits show significant differential streaming also for iron ions Fe8+, Fe9+, Fe10+.

The negative differential streaming at low proton velocities has been reduced, but did not vanish completely.

- Application of the Poisson fit method to further ions (e.g. C, Si, Ne ions etc.)
 → uniform fit of the complete ET-matrix
- Estimation of the count rate errors via a Monte Carlo bootstrap procedure
 → Error propagation to the obtained differential streaming

Christian-Albrechts-Universität zu Kiel

Backup slides

Ulysses / SWICS

CTOF

Ulysses / SWICS <1.5 AU