The solar coronal magnetic field Thomas Wiegelmann

Solar Corona is very dynamic

Coronal mass ejection on
August, 10 2010.An AIA image in 193 Å after
a solar eruption and a flare.Composite image from SDO

Source: http://sdo.gsfc.nasa.gov/gallery

Eruption have impact on Earth

Aurora

Aim: Understand physics of these eruptions and predict them.

Solar magnetic fields: Measurements and Impact

Magnetic fields are measured routinely in the Solar photosphere (SOHO/MDI).

Magnetic fields structure the coronal plasma (SOHO/EIT).

We "see" field lines in coronal EUV-images

We measure the magnetic field in photosphere

ent

How to derive the coronal magnetic field structure?
1.Use loops visible in EUV as proxy for fieldlines => Stereoscopy to derive 3D structure
2. Extrapolate photospheric field vector in the corona

1.) Stereoscopy, Stereo mission

The 2 STEREOspacecraft observe the Sun simultaneously. For oberserving (plama on) magnetic field lines, we use mainly **EUV-images from** STEREO/SECCHI.

SOHO/EIT and SDO/AIA can be used as third eye.

Associate objects in both images: The correspondence problem

Contrast enhanced EUVI-images from STEREO-A (right) and B. Overplotted are automatic extracted loops. Same number in both images do not neccessarily correspond to the same loop. (From Feng et al., ApJL 2007)

Geometric stereoscopy

Reconstruction error

Stereo-angle 3.4 degree red: direct stereoscopy black: spline fit

- Features tangential to epipolar lines have highest reconstruction error.
- For east-west coronal loops this means that largest reconstruction errors occur at the loop top.

2. Extrapolate photospheric fields: Force-free coronal magnetic fields

In the coronal low beta plasma we can neglect in lowest order non-magnetic forces like pressure gradients and gravity and derive the (usually nonlinear) **force-free field equations**:

$$\begin{aligned} (\nabla \times \mathbf{B}) \times \mathbf{B} &= \mathbf{0}, \\ \nabla \cdot \mathbf{B} &= 0. \end{aligned}$$

A subclass of force-free $\nabla \times \mathbf{B} = 0$ fields are current free $\nabla \cdot \mathbf{B} = 0$ potential fields $\nabla \cdot \mathbf{B} = 0$ $\Delta \Phi = 0$

Wiegelmann & Solanki 2004

Potential fields give a first impression on the global coronal field structure. They do not contain free energy and therefore cannot erupt.

Global Potential fields (SOHO/MDI) Plasma in (SOHO/ EIT)

NonLinear Force-Free Fields

- Compute initial a potential field (Requires only Bn on bottom boundary)
- Iterate for NLFFF-field, Boundary conditions:
 - Bn and Jn for positive or negative polarity on boundary (**Grad-Rubin method**)
 - Magnetic field vector Bx By Bz on boundary (MHD-relaxation, Optimization method)

Consistent boundary conditions for force-free fields (Molodensky 1969, Aly 1989)

$$\int_{V} \nabla \cdot \mathbf{B} \, d^{3}x = 0 \Rightarrow \oint_{S} \mathbf{B} \, d\mathbf{S} = 0 \qquad \text{Flux-balance}$$

$$\int_{V} (\nabla \times \mathbf{B}) \times \mathbf{B} \, d^{3}x = 0$$

$$\int_{V} \nabla \cdot T \, d^{3}x = 0 \Rightarrow \oint_{S} T d\mathbf{S} = 0$$

$$T_{ij} = B_{i}B_{j} - \frac{1}{2}\mathbf{B}^{2}\delta_{ij} \xrightarrow{\text{Maxwell Stress}}_{\text{Tensor}}$$

$$\int_{V} \mathbf{r} \times \left[(\nabla \times \mathbf{B}) \times \mathbf{B} \right] \, d^{3}x = 0$$

$$\int_{V} \nabla \cdot \tilde{T} \, d^{3}x = 0 \Rightarrow \oint_{S} \tilde{T} d\mathbf{S} = 0$$

$$\tilde{T}_{ij} = \epsilon_{jkl} r_{k} T_{ij}$$
No net torque on boundary

Magnetic field is measured routinely in the photosphere. Other boundaries are a priori unknown.

If these relations are not fulfilled in the bottom boundary, force-free fields do not exist for these boundary conditions.

Possible Solution: Use these relations to derive consistent boundary conditions for force-free coronal magnetic field models.

Preprocessing

Solar Flare Telescope, Tokyo

Application to 2 Active Regions (Thalmann et al. 2008)

vector magnetograph data : field of view January 2004 : AR 10540 – SFT/VM

June 2007 : AR 10960 - SOLIS/VSM

Magnetic field extrapolations from Solar Flare telescope

Extrapolated from SOLIS vector magnetograph

Stereoscopy vs. force-free field extrapolation

Quantitative comparison was unsatisfactory, why?

- Limited FOV of Hinode-vector magnetograms
- Error in stereoscopy-loops due to small separation angle between STEREO-spacecraft.

What to do? Joint suggestions from NLFFF-workshops, DeRosa et al. ApJ, 2009

Successful use of nonlinear force-free models require:

- 1. large model volumes at high resolution that accommodate most of the connectivity within a region and SDO/HMI to its surroundings;
- 2. accommodation of measurement uncertainties (in particular in the transverse field component) in boundary condition;
- 3. 'preprocessing' of the lower-boundary vector field for a realistic approximation of the high-chromospheric, near force-free field;
- 4. Force-free models should be compared (or even improved) with coronal observations.

Routinely done with SDO/AIA

Done, next slide

NLFFF optimization code $(\nabla \times \mathbf{B}) \times \mathbf{B} = \mathbf{0}$ $\nabla \cdot \mathbf{B} = \mathbf{0}$ $\mathbf{B} = \mathbf{B}_{obs}$ on bottom boundary

$$L = \int_{V} w_{f} \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^{2}}{B^{2}} + w_{d} |\nabla \cdot \mathbf{B}|^{2} d^{3}V$$
$$\underbrace{+\nu}_{S} (\mathbf{B} - \mathbf{B}_{obs}) \mathbf{W} \cdot (\mathbf{B} - \mathbf{B}_{obs}) d^{2}S$$

igrangian multiplier and mask have to be optimized

The SDO-era (since 2010) How to optimize an NLFFF-code for active regions observed with HMI?

Quality of the vector magnetogram (consistency with force-free model)

$$\begin{aligned} \epsilon_{\text{flux}} &= \frac{\int_{S} B_{z}}{\int_{S} |B_{z}|} \\ \epsilon_{\text{force}} &= \frac{|\int_{S} B_{x} B_{z}| + |\int_{S} B_{y} B_{z}| + |\int_{S} (B_{x}^{2} + B_{y}^{2}) - B_{z}^{2}|}{\int_{S} (B_{x}^{2} + B_{y}^{2} + B_{z}^{2})} \\ \epsilon_{\text{forque}} &= \frac{|\int_{S} x((B_{x}^{2} + B_{y}^{2}) - B_{z}^{2})| + |\int_{S} y((B_{x}^{2} + B_{y}^{2}) - B_{z}^{2})| + |\int_{S} yB_{x}B_{z} - xB_{y}B_{z}|}{\int_{S} \sqrt{x^{2} + y^{2}} (B_{x}^{2} + B_{y}^{2} + B_{z}^{2})} \end{aligned}$$

These quantities should be small on the bottom boundary of a NLFFF-simulation Box. If this is not the case =>Preprocessing (Wiegelmann et al. 2006)

Conclusions

- With EUV-images from several viewpoints we get 3D topology of loops and plasma parameters.
- State of the art of magnetic field extrapolations are non-linear force-free models.
- Both methods have shortcomings/errors and we should continue to compare and combine them, e.g. with SDO/AIA and HMI.

