EPHIN/COSTEP

Level-2 Data Format Specification

for SOHO Archive

Prepared by :

Reinhold Müller-Mellin Holger Boll Carsten Scharmberg

Most recent update :

January 2008

Contact address :

Institut für Experimentelle und Angewandte Physik Leibnizstr. 11, D-24118 Kiel, Germany

Reinhold Müller-Mellin Phone: (49-431) 880 3227 Fax: (49-431) 880 3968 e-mail: <u>mueller-mellin@physik.uni-kiel.de</u>

Bernd Heber Phone: (49-431) 880 3955 Fax: (49-431) 880 3968 e-mail: <u>heber@physik.uni-kiel.de</u>

1. Data Product

The EPHIN instrument (Electron Proton Helium INstrument) forms part of the COSTEP experiment (COmprehensive SupraThermal and Energetic Particle Analyser) within the CEPAC collaboration on bord of the SOHO spacecraft (SOlar and Heliospheric Observatory). For a detailed description of the SOHO mission and the COSTEP experiment see *Solar Physics*, **162**, 1995.

The EPHIN instrument produces scientific data at a constant rate of 172 bit/s or 15 megabit per day and housekeeping data at a rate of 0.25 megabit per day (Level Zero data). This data set is processed at the University of Kiel in two steps yielding Level 1 and Level 2 products. The Level 2 data set is organized in files per day, primarily counting rate information (~ 0.36 megabyte per day) and pulse height analysis information (~ 15 megabyte per day) together with their detached header files. Furthermore a correction file (~0.16 megabyte per day) is included which can be used to correct the counting rates for instrumental effects (e.g. gamma ray and neutron produced background, contamination of one particle species by the other) and to separate isotopes.

Caveat

Detector E (threshold 580 keV) grew noisy in the course of 1996 (quiet rate 3,000 counts/min, disturbed rate > 10,000 counts/min). When the noise rate exceeded 40,000 counts/min, it started to affect the science channels by increasing the dead time (decreasing rate in integral channel). On 31-OCT-1996 detector E was switched off logically by commanding EPHIN into Failure mode E, i.e. detector E is still under bias but prevented from triggering the coincidence network. A software patch was uploaded on 19-FEB-1997 to recover most of the information from detector E thereby mitigating the effect of the noisy detector. See Section 4 (Status Flag) for information on how this affected the science data interpretation.

Data Files:

File Contents	Name Convention	on	
EPHIN counting rates	EPxyydoy.RL2;	1995 - 1999: x=H	since 2000: x=I
EPHIN pulse height analysis (PHA)	EPxyydoy.PL2;	1995 - 1999: x=H	since 2000: x=l
EPHIN rate correction	EPxyydoy.KOR;	1995 - 1999: x=H	since 2000: x=l

Detached Header Files:

File Contents	Name Convention					
File header for rate data file	EPxyydoy.MR2;	1995 - 1999: x=H	since 2000: x=l			
File header for PHA data file	EPxyydoy.MP2;	1995 - 1999: x=H	since 2000: x=l			

- Counting rates are given as intensities in units of counts/cm² s sr MeV, a subset of counting rates is given as counting results per accumulation interval of 59.953 seconds. The factors which were used to convert counting results into intensities are given in chapter 5.
- Pulse height words are given as energy deposits in units of MeV. The conversion factors which were used to convert ADC value of a pulse height into MeV are given in chapter 6.
- Rate correction data are given as counts, from which the correction factor can be derived.
- Time resolution for all 3 data sets is 1 minute (exact accumulation period is 59.953 seconds).

2. Data Format Description

2.1 Counting rates file: EPxyydoy.RL2

Item	Label:	Data Type	Data Contents	Units
1	PB5 Year	integer	year	year 4 digits
2	DOY	integer	day of year	day 1 366
3	MS	integer	milliseconds of day	ms 0 86,400,000
4	S/C Epoch	float (double)	ms since year 0	ms 14 digits
5	Status Word part 1	Integer	bits 0 to 31	binary
6	Status Word part 2	Integer	bits 32 to 39	binary

			see chapter 3	
7	E150	float (E-Fmt)	intensity	/cm ² s sr MeV
8	E300	float (E-Fmt)	intensity	/cm ² s sr MeV
9	E1300	float (E-Fmt)	intensity	/cm ² s sr MeV
10	E3000	float (E-Fmt)	intensity	/cm ² s sr MeV
11	P4	float (E-Fmt)	intensity	/cm ² s sr MeV
12	P8	float (E-Fmt)	intensity	/cm ² s sr MeV
13	P25	float (E-Fmt)	intensity	/cm ² s sr MeV
14	P41	float (E-Fmt)	intensity	/cm ² s sr MeV

Counting rates file: EPxyydoy.RL2 (continued)

ltem	Label	Data Type	Data Contents	Units
15	H4	float (E-Fmt)	intensity	/cm ² s sr MeV/n
16	H8	float (E-Fmt)	intensity	/cm ² s sr MeV/n
17	H25	float (E-Fmt)	intensity	/cm ² s sr MeV/n
18	H41	float (E-Fmt)	intensity	/cm ² s sr MeV/n
19	INT	float (E-Fmt)	intensity	/cm ² s sr
20	P4 GM	integer	particle count	counts
21	P4 GR	integer	particle count	counts
22	P4 S	integer	particle count	counts
23	P8 GM	integer	particle count	counts
24	P8 GR	integer	particle count	counts
25	P8 S	integer	particle count	counts
26	P25 GM	integer	particle count	counts
27	P25 GR	integer	particle count	counts
28	P25 S	integer	particle count	counts
29	P41 GM	integer	particle count	counts
30	P41 GR	integer	particle count	counts
31	P41 S	integer	particle count	counts
32	H4 GM	integer	particle count	counts
33	H4 GR	integer	particle count	counts
34	H4 S1	integer	particle count	counts
35	H4 S23	integer	particle count	counts
36	H8 GM	integer	particle count	counts
37	H8 GR	integer	particle count	counts
38	H8 S1	integer	particle count	counts
39	H8 S23	integer	particle count	counts
40	H25 GM	integer	particle count	counts
41	H25 GR	integer	particle count	counts
42	H25 S1	integer	particle count	counts
43	H25 S23	integer	particle count	counts
44	H41 GM	integer	particle count	counts
45	H41 GR	integer	particle count	counts
46	H41 S1	integer	particle count	counts
47	H41 S23	integer	particle count	counts
48	Status Flag	integer	see chapter 4	binary
49 50 51	Spare Spare Spare			

GM = Particles incident parallel to sensor axis, passing through both center segments: A0 and B0 (0° ... 21°)

GR = Particles incident parallel to sensor axis, passing through corresponding ring segments: A1 and B1 or ... or A5 and B5 (0° ... 28°)

S1 = Particles incident at oblique angle through one center segment and one ring segment: A0 and

S23 = B1 or ... or A5 and B0 (0° ... 34°) Particles incident at oblique angle through ring segments: A1 and B2 ... or A1 and B3 (0° ... 42°)

2.2 PHA file: EPxyydoy.PL2

Item	Label	Data Type	Data Contents	Units/Values
1	S/C Epoch	float (double)	ms since year 0	ms 14 digits
2	Со	integer	coincidence type	0 12
3	Aseg	integer	segment det. A	0 5
4	Bseg	integer	segment det. B	0 5
5	Pri	integer	priority flag	0 or 1
6	PHA_A	float (F-Fmt)	energy loss in det. A	MeV
7	PHA_B	float (F-Fmt)	energy loss in det. B	MeV
8	PHA_C	float (F-Fmt)	energy loss in det. C	MeV
9	PHA_D	float (F-Fmt)	energy loss in det. D	MeV
10	PHA_E	float (F-Fmt)	energy loss in det. E	MeV
11	E_tot	float (F-Fmt)	total energy loss	MeV
12	spare			
13	spare			
14	spare			
15	spare			

Coincid. type	0	1	2	3	4	5	6	7	8	9	10	11	12
Channel	E150	E300	E1300	E3000	P4	P8	P25	P41	H4	H8	H25	H41	INT

2.3 Rate correction file: EPxyydoy.KOR

Item	Data c	ontents	Data type	Units
1	year		integer	year: 4 digits
2	day of	year	integer	day: 1366
3	ms of c	lay	integer	ms: 086,400,000
4	ms sine	ce year 0	float (double)	ms: 14 digits
	P4			
5	Ptota	total # of particles in P4 PHA, arbitrary incidence	integer	counts
6	p+d	# particles in proton & deuterium box, arb. incidence	integer	counts
7	Ptotp	total # of particles in P4 PHA, parallel incidence	integer	counts
8	р	# of particles in proton box, parallel incidence	integer	counts
9	d	# of particles in deuterim box, parallel incidence	integer	counts
	P8			
10	Ptota	total # of particles in P8 PHA, arbitrary incidence	integer	counts
11	p+d	# particles in proton & deuterium box, arb. incidence	integer	counts
12	Ptotp	total # of particles in P8 PHA, parallel incidence	integer	counts
13	р	# of particles in proton box, parallel incidence	integer	counts
14	d	# of particles in deuterim box, parallel incidence	integer	counts
	P25			
15	Ptota	total # of particles in P25 PHA, arbitrary incidence	integer	counts
16	p+d	# particles in proton & deuterium box, arb. incidence	integer	counts
17	Ptotp	total # of particles in P25 PHA, parallel incidence	integer	counts
18	р	# of particles in proton box, parallel incidence	integer	counts
19	d	# of particles in deuterim box, parallel incidence	integer	counts
	P41			
20	Ptota	total # of particles in P41 PHA, arbitrary incidence	integer	counts
21	p+d	# particles in proton & deuterium box, arb. incidence	integer	counts
22	Ptotp	total # of particles in P41 PHA, parallel incidence	integer	counts
23	р	# of particles in proton box, parallel incidence	integer	counts
24	d	# of particles in deuterim box, parallel incidence	integer	counts
	H4			
25	Ptota	total # of particles in H4 PHA, arbitrary incidence	integer	counts
26	°He + ⁴	He # particles in ³ He + ⁴ He box, arb.incidence	integer	counts
27	Ptotp	total # of particles in H4 PHA, parallel incidence	integer	counts

28	³ He # of particles in ³ He box, parallel incidence	integer	counts
29	⁴ He # of particles in ⁴ He box, parallel incidence	integer	counts
	H8		
30	Ptota total # of particles in H8 PHA, arbitrary incidence	integer	counts
31	${}^{3}\text{He} + {}^{4}\text{He}$ # particles in ${}^{3}\text{He} + {}^{4}\text{He}$ box, arb incidence	integer	counts
32	Ptotp total # of particles in H8 PHA, parallel incidence	integer	counts
33	³ He # of particles in ³ He box, parallel incidence	integer	counts
34	⁴ He # of particles in ⁴ He box, parallel incidence	integer	counts
	H25		
35	Ptota total # of particles in H25 PHA, arbitrary incidence	integer	counts
36	³ He + ⁴ He # particles in ³ He + ⁴ He box, arb.incidence	integer	counts
37	Ptotp total # of particles in H25 PHA, parallel incidence	integer	counts
38	³ He # of particles in ³ He box, parallel incidence	integer	counts
39	⁴ He # of particles in ⁴ He box, parallel incidence	integer	counts
	H41		
40	Ptota total # of particles in H41 PHA, arbitrary incidence	integer	counts
41	³ He + ⁴ He $\#$ particles in ³ He + ⁴ He box, arb.incidence	integer	counts
42	Ptotp total # of particles in H41 PHA, parallel incidence	integer	counts
43	³ He # of particles in ³ He box, parallel incidence	integer	counts
44	⁴ He # of particles in ⁴ He box, parallel incidence	integer	counts

Energetic particles can undergo several processes in the EPHIN telescope, which lead to inaccurate particle classification: e.g. electrons can be scattered by large angles, reducing their penetration depth in the detector stack and thus mimicking nuclei, nuclei can pass through insensitive matter like detector mounts, depositing less observable energy, or suffer from nuclear interaction in the silicon detector. This is to a large degree unavoidable, but can be corrected to some degree by pulse height analysis. Using ground data from accelerator calibration and flight data from the first 8 months of SOHO operation, calibration curves for the various nuclei species were established. Boxes around these curves allow elemental and isotopic separation for protons, deuterium, helium-3 and helium-4. Restriction to only particles incident parallel to the optical axis of the telescope decreases the path length variation, thereby increasing the isotopic resolution at the expense of statistical accuracy. To improve on statistics, averaging over longer time periods may be carried out. Owing to multiple scattering there is no easy correction available for electron channels.

How to correct the counting rates:

1. divide the number of PHA counts in the box by the total number of PHA counts

2. apply this correction factor to the associated counting rate

Example for arbitrary incidence:

P4 corrected = P4 uncorrected (= item 11 of EPxyydoy.RL2) • _____

item 5 of EPxyydoy.KOR

item 6 of EPxyydoy.KOR

Example for parallel incidence:

P4	item 20 + item 21 of EPxyydoy.RL2	item 8 + item 9 of EPxyydoy.KOR
- corrected	59.953 • 1.02 • 3.5	item 7 of EPxyydoy.KOR

Note: for parallel incidence the counting results must be converted into intensities. The geometric factor for the sum of six segments (P4GM+P4GR) is about 5 % less than 6 times the geometric factor for the center segments (Ring A/B OFF, see chapter 5).

How to average corrected fluxes over n minutes:

Average = $\frac{1}{n} \sum_{i=1}^{n}$ (counting rate • correction factor)

2.4 Header for Rate Data File: EPxyydoy.MR2

Example:

University of Kiel, Extraterrestrial Physics Group PI: Horst Kunow Program: GENSCIL2, Author: Holger Boll, Jan-97 Program_Version: 1.0 Data_Version: V01 Project: SOHO-COSTEP Instrument: EPHIN Data_Type: Rates Data_File_Name:EPH97001.RL2 Data_File_Type: ASCII Generation_Date: Tue Feb 18 16:48:43 1997 Data_Period_Start: 1997-01-01 00:01:10 Data_Period_End : 1997-01-01 23:59:02 Parameter_File_Name: EPH_IFAC.PRO

2.5 Header for PHA Data File: EPxyydoy.MP2

Example:

University of Kiel, Extraterrestrial Physics Group PI: Horst Kunow Program: GENPHAL2, Author: Holger Boll, Jan-97 Program_Version: 1.0 Data_Version: V01 Project: SOHO-COSTEP Instrument: EPHIN Data_Type: Pulse Height Analysis Data_Tile_Name: EPH97001.PL2 Data_File_Type: ASCII Generation_Date: Thu Feb 13 14:15:58 1997 Data_Period_Start: 1997-01-01 00:01:10 Data_Period_End : 1997-01-01 23:59:02 Parameter_File_Name: PHA_BIN_ENERG.PRO

3. EPHIN Status Word

The EPHIN status word in words 5 and 6 of the counting rate file is implemented by hardware in the onboard EPHIN electronics and telemetered to ground. Its unrestricted use requires detailed knowledge of the EPHIN hardware. For data evaluation by scientists less familiar with the hardware, an EPHIN status flag in word 48 of the counting rate file has been implemented by software (see chapter 4).

Label	Bit	EPHIN	EPHIN Status Information							
	Position	MSB							LSB	Comment
Status part 1	31 – 24	N/U	FMB	FMB5	FMB4	FMB3	FMB2	FMB1	FMB0	Fail. mode
default		0	1	1	1	1	1	1	1	Det. B
Status part 1	23 – 16	Ring	FMA	FMA5	FMA4	FMA3	FMA2	FMA1	FMA0	Fail. mode
default		0	1	1	1	1	1	1	1	Det. A
Status part 1	15 - 8	N/U	Reset	Wdog	PROM	SRAM	RAM	Dwnld	Upld	CPU status
default		0	0	0	1	1	1	0	0	
Status part 1	7-0	Op Mo	de	SIO Fr	SIO Ovr	SIO Par	Minute	Counter		mode, error,
default		0	1	0	0	0	Х	Х	Х	frame count
Status part 2	31 – 8	N/U								
default		0								
Status part 2	7 - 0	Det.G	Det.A-F	An.Pow	FMG	FMF	FME	FMD	FMC	Power and
default		1	1	1	1	1	1	1	1	Fail. mode

N/U = not used X = don't care SIO Fr, Ovr, Par = Serial Input Output framing error, overrun error, parity error<math>Wdog = watchdog event

Op mode 00 = standby, 01 = nominal operation, 10 = calibration, 11 = not allowed

4. EPHIN Status Flag

The EPHIN status flag shall facilitate the use of the EPHIN data set without detailed knowledge of the EPHIN hardware status bits and their effects. The status flag is generated by ground software. It is located in word 48 of the counting rate file. The contents of the status flag is a decimal code which results from the summation of the flag bit values.

Flag Bit Value	Remarks
0	Nominal observation, i.e. High Voltage ON, no failure mode, ring segment switch-
	ing disabled
1	Failure mode E
2	Ring A/B OFF
4	E patch uploaded
8	Commissioning
16	Standby or maintenance, i.e. High Voltage OFF
32	Calibration, i.e. test mode
64	Ring segment switching enabled
128	TBD

4.1 Status Flag History

A status flag history is given from first switch-on in December 1995 until December 1998. The status flag is valid from the time indicated until a new status flag is listed. An updated list of the status flag is included on the Level 2 distribution medium (see CAVEAT.TXT).

Year	Month	Day	Hour	Minute	Status Flag	Change	Bit value
1995	12	07	17	28	16	EPHIN ON (standby or maintenance)	
1995	12	07	17	35	0	Nominal observation	0
1995	12	09	17	03	8	Commissioning	8
1995	12	10	05	15	0	Nominal observation	0
1996	10	31	14	47	1	Failure mode E	1
1996	12	12	16	42	3	Ring A/B OFF (for check-out only)	2
1996	12	18	14	45	1	Ring A/B ON (back to normal)	0
1997	02	15	10	25	-1	EPHIN OFF (no data)	
1997	02	16	16	37	16	EPHIN ON (standby or maintenance)	16
1997	02	16	16	45	0	Nominal observation	0
1997	02	19	14	57	1	Failure mode E	1
1997	03	13	14	41	5	Upload E patch (salvage PHA_E)	4
1997	04	23	16	19	37	Calibration	32
1997	04	23	16	28	5	End calibration	0
1997	08	22	13	10	5	Upload histogram patch (parallel inci- dence)	No change
1997	10	10	14	39	69	Enable ring segment switching	64
1998	06	25	00	00	-1	OFF (SOHO hibernation)	
1998	10	09	10	44	16	EPHIN ON (standby or maintenance)	16
1998	10	09	11	30	0	Nominal observation	0
1998	10	09	12	38	8	Commissioning	8
1998	10	09	14	00	69	FME, Epatch, hist.patch, ring_seg_enable	69
1998	11	14	16	18	85	Standby (HV OFF for Leonids) 1	
1998	11	21	16	14	69	HV ON (recover from Leonids) 0	
1998	12	21	17	49	-1	SOHO in ESR mode	

Note:

• The code -1 (no data) is dummy. It will not show up in L2 data records as it is only introduced for the purpose of machine reading above table.

• The first table or software upload after EPHIN ON will set bit 2² (value 4). It can only be cleared by power cycling or by a reset command. A second upload will not be recognizable as a status change (see e.g. histogram patch on 22-AUG-97).

 There are more Emergency Sun Reacquisition (ESR) incidents in the course of the mission. Each time the ground control script H-10 (CEPAC Power ON/Recovery) will reconfigure EPHIN such that the status flag will show the value 69.

4.2 Example

In order to select data which are taken with EPHIN in observation mode (not always nominal !) the flag shall have the following contents:

Start	Stop	Status Flag	Remarks
07-DEC-95	09-DEC-95	0	Nominal observation
10-DEC-95	31-OCT-96	0	Nominal observation
31-OCT-96	12-DEC-96	1	 Failure mode E Rates: E3000, P41, H41 show zero counts, corresponding events are counted together with E1300, P25, H25, hence use larger energy window. PHA: no PHA words for E3000, P41, H41, corresponding events are pulse height analyzed as E1300, P25, H25, pulse heights for E (PHA_E) are lost.
12-DEC-96	18-DEC-96	3	Failure mode E with ring A/B OFF Rates: as in failure mode E above but use small geometry factor PHA: as in failure mode E above
18-DEC-96	19-FEB-97	1	Failure mode E (see above)
19-FEB-97	10-OCT-97	5	 Failure mode E with upload of E-patch, i.e. recovery of PHA_E Rates: as in failure mode E above PHA: no PHA words for E1300, P25, H25 events corresponding events are pulse height analyzed as E3000, P41, H41. PHA_E = zero for true E1300, P25, H25 events PHA_E > zero for true E3000, P41, H41 events.
10-OCT-97	> FEB-98	69	Failure mode E with upload of E-patch and automatic ring segment switching enabled Irregular status changes may occur automatically: "RING A/B OFF", i.e. bit value 2 is added (flag =71). This status change is event driven, it switches to the low geometric factor during high fluxes. On detection of low fluxes, the ring segments are switched back on again. The occurrence is not recorded in this table.

5. EPHIN Intensity Factors

Part of the Level-2 counting rates are already converted into intensities [counts/(cm² s sr MeV/n)] by dividing the counting rates [counts/s] through the intensity factor:

Intensity Factor = Geometry Factor • Energy Window [cm² sr MeV/n]

The factors vary with observation modes of EPHIN. The following observation modes with influence on the intensity factor have been in use during the SOHO prime mission:

Observation Mode	Description			
nominal mode	High voltage on, all detectors logically on			
failure mode E	High voltage on, detector E logically off			
ring A/B off	High voltage on, segments A1 A5 and B1 B5 logically off and re-			
	spective preamplifier power off			

Geometry Factor: units: cm² sr

Geometry factor: nominal observation mode						
0.25	1.78	2.01	1.58	E150, E300, E1300, E3000		
5.14	5.14	4.77	3.8	P4, P8, P25, P41		
5.14	5.14	4.77	3.8	H4, H8, H25, H41		
6.85				INT		

Geometry	Geometry factor: failure mode E							
0.25	1.78	1.8	1.	E150, E300, E1300, E3000				
5.14	5.14	4.29	1.	P4, P8, P25, P41				
5.14	5.14	4.29	1.	H4, H8, H25, H41				
7.84				INT				

Geometry factor: ring A/B off and failure mode E						
0.01	0.14	0.11	1.	E150, E300, E1300, E3000		
0.18	0.18	0.18	1.	P4, P8, P25, P41		
0.18	0.18	0.18	1.	H4, H8, H25, H41		
0.36				INT		

Note: The combination ring A/B off without failure mode E will probably never occur.

Energy Window:

units: MeV or MeV/n

Energy window: nominal observation mode						
0.45	2.3	3.6	5.2	E150, E300, E1300, E3000		
3.5	17.2	16.	12.	P4, P8, P25, P41		
3.5	17.2	16.	12.	H4, H8, H25, H41		
1.				INT		

Energy window: failure mode E						
0.45	2.3	7.4	1.	E150, E300, E1300, E3000		
3.5	17.2	28.	1.	P4, P8, P25, P41		
3.5	17.2	28.	1.	H4, H8, H25, H41		
1.				INT		

Note:

• No energy window is given for the integral counter INT. The geometry factor given is twice the forward incident factor assuming an idealized response for forward and backward incident particles. The actual factor is somewhat lower due to absorption in the spacecraft matter.

• Switching ring segments off does not change the energy window

6. EPHIN PHA conversion factors

The Level 2 data in the PHA files are given in units of MeV. The following conversion factors were used to convert the telemetered channel number TLM_i , i.e. the analog-to-digital converter result of a pulse height, into energy deposit PHA_i in MeV for detector i:

$$PHA_{i} = \frac{TLM_{i}}{1023} \bullet Factor_{i}$$

where Factor_i can be either the low range factor or high range factor, depending on the Low/High flag of the telemetered pulse height word.

Detector pulse height	Low range factor	High range factor
PHA_A	3.00	30.00
PHA_B	3.00	45.00
PHA_C	16.07	166.7
PHA_D	20.00	225.00
PHA_E	20.00	225.00